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ABSTRACT

LEE, KYOUNG OOK. Particle Tracking Using Molecular Dynamics Simulation For
Pebble Bed Reactors. (Under the direction of Robin P. Gardner.)

Characteristics of the pebble tracks generated through Molecular Dynamics (MD)

Simulations were investigated for a Pebble Bed Reactor (PBR). Through monitoring the

mass flow rate and its resultant local volume fraction as well as the local coordination

numbers (the local means that were defined by the regime within the separate parts of the

reactor; the coordination number is defined as the number of contacting its neighbors),

the pebble piling up and subsequent discharge were investigated. Simulations were then

conducted through the implementation of the non-cohesive Hertz-Mindlin theory. The

governing equation can be derived from Lagrangian dynamics that are given by the

kinetic and potential energies. The kinetic energy consists of the translational and the

rotational kinetic energies and the potential energy consists of the gravitational and the

Hertz potentials. MD simulation builds off of the virial theorem (relating to the system

of forces and their positions) which states that the stress energy tensor is in relation

to the gravitational potential and the Hertz potential. The output of the simulation

data gives the force, the velocity, and the position of the particles. Calculation from

the interactions between the particles resides within the Hertz-Mindlin potential. These

interactions resulted in a pilling effect from the deposited particles being simply dropped

into the hopper of the PBR. At which point, the discharge in the local region was observed

and from this it was then determined if the jamming phenomenon was occurring. The

phase diagram of the volume fraction and the coordination number was found to yield the

transition of the jamming or flowing condition. Regardless of the situation experienced,

the mass flow rate and the phase diagram agreed on the flow established. Specific analysis
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on the flowing condition requires a heterogeneous medium that can influence the wall

applied shear and normal stresses which are then used to determine the pebble flow and

to evaluate their subsequent energies. When implementing the MD simulation, it was

found that a random walk process within Monte Carlo simulation was the most accurate

approach to the solution.
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Chapter 1

Introduction

In recent years, Molecular Dynamics (MD) Simulations or the Discrete Element Method

(DEM), introduced by Cundall and Strack (1979) has been recognized as a crucial nu-

merical tool to simulate granular dynamics in Pebble Bed Reactors (PBRs) in order

to broaden our understanding of complex phenomena. These simulations are improved

models that closely resemble physical reality and validate the experimental process lead-

ing to optimum scientific progress. For Pebble Bed Reactors, the Hertz-Mindlin contact

theory (Johnson 1985) was used by Rycroft, Grest et al. (2006). The contact param-

eters turned out to have a significant influence in previous work, Brilliantov, Spahn et

al. (1996); Silbert, Ertas et al. (2001), Zhang and Makse (2005). PBRs were per-

formed by Gan, Kamlah et al.(2010); Li,Yong et al. (2009). The simulation results were

in good agreement with the experiment. Successively, our approach uses an noncohe-

sive and deformable contact dynamics through the stress and strain relation results in a

more accurate method. For MD simulation and field estimates, the computational code

LAMMPS/LIGGGHTS has been used because of its efficient algorithm. Wall stress field

is implemented by the LIGGGHTS code for granular flow with the MD simulation. The

1
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Hertz-Mindlin theory begins with the static pattern forming interface for the dynamic

pattern coupled to the MD simulation. When pebbles are transported down in the cylin-

drical vessel to the regions inside the hopper created by a conical angle determined by

geometrical conditions, the type of flow and the flow rate will have important roles in

PBRs that indicate the like-solid or like-fluid phase transition, Jaeger, Nagel et al. (1996);

Ono, O’Hern et al. (2002). This data analysis can be investigated by a velocity profile,

streamline for particle tracking, and random packing fraction etc. The simulation results

were compared and then validated by statistical modeling. A natural way to describe

granular motion is through the continuum approach, where the grains are not thought

to be composed of discrete particles, but rather are treated as continuously filling the

regions.

1.1 Literature Review

This review mainly refers to a systematic representation of recent papers, which de-

scribed the theoretical view of particle tracking method in Pebble Bed Reactors (PBRs).

We summarize the recent results of various models consistent with experimental results

in PBRs. A general theory of granular flow does not exist although many efforts have

been made to complete a universal equation to predict the behavior of granular media,

which is recognized to deal with occasionally fluid-like, solid-like or gas-like behavior

(Jaeger, Nagel et al. 1996). A granular material consists of a number of discrete solid

particles and an interstitial space. Granular dynamics is very complex due to many body

interactions. Particularly in PBRs, the obstacle of a bulk particles arching or locking

in a conical hopper or silo might occur to drain out these materials or decrease flow

2
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Figure 1.1: Configuration for Pebble Bed Reactor design of the conical hopper and
pebble locations with wall stress from two different points of view (side and bottom) by
MD simulation

3
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velocity. The macroscopic motions in gravity-driven systems are governed by not only

the geometry and external boundary condition of the silo but also flow properties of

granular materials, such as friction, viscosity and porosity. Obviously, an understanding

of the pebbles transportation is very important to generate the reactor. The probability

of pebble transition is regarded as a random walk imposed according to a velocity scale.

By determining the velocity distribution, our main aim is to gain insight into how the

velocity distribution of pebbles is essentially adapted when statistical state prevails. We

show how this theoretical approach can be extended to acquire the significant parameters

involved.

1.1.1 Monte Carlo PBR Pebble Tracking Simulation Via a Ran-

dom Walk Approach

Using Monte Carlo (MC) simulation, random walks are used for pebble (particle) track-

ing in a two-dimensional geometry in the presence of a biased gravity field. The MC

simulation is developed with free-grid transport of a particle with random effects for

implementing the convection diffusion equation. Investigation of the effect of viscosity

damping in the presence of Gaussian random fluctuation superimposed on an external

force is considered. A macroscopic description of granular flow patterns can be accom-

plished with a Stochastic Method in the discrete medium of a pebble (particle) packing

structure using the effect of random fluctuations, Caram and Hong (1991). The motion of

particles can be described for many different aspects of the flow. It is often used for MC

simulation for granular flow trajectories, which is closer to the benchmark of a radioac-

tive tracer method for the development of mathematical models, Gardner, Barrett et al.

4
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(1996). This fluid-like behavior is collectively characterized by the Langevin equation

for describing Brownian particle movement by changing directions in particle collisions.

The MC simulation implements the use of random walks in two-dimensional or three-

dimensional convection diffusion equations. This method uses free-grid transport of a

particle, which carries the effect of viscosity damping by Gaussian random fluctuation in

the presence of an external force.

Convection diffusion equation

The convection diffusion equation in two dimensions can mathematically be described by

the concentration C(r, t) of diffusing particles using Fick’s Law

J = −K∂C (r, t)

∂x
−K

∂C (r, t)

∂z
+ 〈u〉C (r, t) (1.1)

and the continuity equation

∂C (r, t)

∂t
+∇ · J = 0 (1.2)

The convection-diffusion equation has the solution

∂C (r, t)

∂t
= K

∂2C (r, t)

∂x2
+K

∂2C (r, t)

∂z2
− 〈u〉 ∂C (z, t)

∂z
(1.3)

where K is the virtual coefficient of diffusion (m2/s) and 〈u〉 is the mean velocity of

the center of mass arising from the external force on the particles. Without a convection

term, the interpretative solution is the mean distance, 〈∆r (t)〉 = 0, and the mean square

distance, 〈∆r2 (t)〉 = 4Dt, where the boundary condition C (±∞, t) = 0.

5
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The Langevin Equation

The spatial direction random walk carriers has two parameters, a granular particle and

the biased random walk placed in an external force field pulled downward by the gravi-

tational force. Two-dimensional random walks have been updated every time automati-

cally, where a trial position has been defined by pseudo-random numbers in real interval

(0,1) with uniform distribution. The direction was then given in four different walks

accompanied by random vertical and horizontal shifts, with the probability of ξi = 1/4

(i = 1, 2, 3, 4) where this sum should be
∑
ξi = 1.

The Langevin equation then becomes

m
dv

dt
= mg − γv + F(t) (1.4)

where in a viscous medium, the frictional coefficient γ is slowing it down, and a random

fluctuation-dissipation term, denoted by F(t), is a Gaussian distribution of random vari-

ables with zero mean and the variance varies in an irregular fashion of time t.

According to the x, z transformation by the Langevin equation when the velocity is

at steady state, dv
dt

= 0

• x direction

x (t+ δt) = x (δt) + vxδt (1.5)

vx (δt) = −m/γF(t)

6
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• z direction

z (t+ δt) = z (δt) + vzδt (1.6)

vz (δt) = −m/γg +m/γF(t)/m

where δt = tn+1 − tn (n, the number of discrete time steps).

In the second phase, the MC algorithm can be derived that it combines with the

diffusive term.

F(t) =
√

2Dδtp (t) (1.7)

In this case the Monte-Carlo method using the Gaussian probability density function

(PDF) has the form p (ϕ) = 1√
2π

exp
(
−ϕ2

2

)
, denoted by ϕ, an arbitrary number to

normally distributed random numbers with zero mean and unit standard deviation. The

Gaussian random variable is equivalent to F(t) that is represented by the motion in the

opposite direction.

Thus simplifying and arranging as

x (t+ δt) = x (δt)±m/γF(t)δt (1.8)

z (t+ δt) = z (δt)−m/γg ±m/γF(t)δt

If many trials are used, the mean square distance can be evaluated to 〈∆r2 (t)〉 =

〈∆x2 (t)〉+ 〈∆z2 (t)〉.

The particle tracking in Figures 1.2 and 1.3 show that the particles have erratic paths

due to a biasing term. There is a critical need for better methods of analysis in order

7
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Figure 1.2: Single particle tracking trajectory in two dimensional motion by placing an
initial condition on the vertical and horizontal positions, z=0 and x=0 with three trial
runs
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Figure 1.3: Travel distance by placing an initial condition on the height, z=0 and x=0
with the identical samples (color) on the corresponding Fig. 1.1
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to understand the fine spatial scale and the density aspects of the granular dynamics in

PBRs. The MC approach presented here appears to be such a method using the New

Kinematic Model (Chapter 2) and the Monte Carlo Simulation describes a benchmark

that implemented a radioisotope tracer method, for granular flow that explicitly accounts

for changes in the density field, Gardner, Barrett et al. (1996). In addition to statistical

analysis, random walks of the time step are related with the probability function on a

formal description of convection-diffusion. The Langevin equation can be shown to obey

the Einstein relation of effective temperature for the diffusion coefficients. To understand

a granular model due to a critical bulk density, it is necessary to use the density transi-

tion of the model known as the approach of Edwards (Mehta and Edwards 1989). The

nonequilibrium phase transition can be characterized by the probability distribution by

extending the packing fraction for granular fluids with elastic or inelastic collisions.

1.1.2 Granular Dynamics using Langevin and Fokker Planck

Equation

Langevin equation with friction is applied under the influence of the gravitational field.

We also discuss the relation with Fokker-Planck Equation using detailed balance and

Metropolis-Hastings algorithm. The collisional entropy can explain a granular jamming

phenomenon. In recent years, there has been considerable interest in understanding

the dynamics of granular particles which is crucial to many applications. The diffu-

sion has been found to be influenced by the local thermal equilibrium. In this work, a

collisional term involves the Langevin equation and the Fokker-Planck equation describ-

ing each interaction of the granular particles. One probability of the Detailed balance

9
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and Metropolis-Hastings algorithm for a Markov Chain Monte Carlo methods is a non-

Maxwellian distribution function with the mean velocity of the field particles and a effec-

tive temperature. Another probability explains the entropy in collisional term towards

jamming phenomenon.

The macroscopic behavior of a particle with a granular mass m that is placed in an

external force field which pulls downward due to the gravitational force is examined. The

Langevin equation (Reif, F. (1965) and Huang, K. (1987)) then becomes

m
dv

dt
= mg − γv + F(t) (1.9)

where the frictional coefficient is γ, and a random fluctuation-dissipation term denoted

by F(t) which very little is known abut because it varies in an irregular fashion with

respect to time t. We assumed the mean value with 〈F(t)〉 = 0 and the correlation with

〈F(t)F(t′)〉 = ζδ(t− t′)

Taking the mean value of both sides and considering the steady state situation,

d 〈v〉 /dt = 0, Thus one obtains

mg − γ 〈v〉 = 0 (1.10)

This shows that 〈v〉 = m
γ
g. The relation is then given by Einstein relation as D =

kT/γ, from the Langevin equation where the temperature relation with the diffusion

coefficient D and a fictional coefficient γ by its particle-surface.

Given the Langevin equation associated with an expression for the Fokker-Planck

f(r,v, t), a derivation of the general equation of the Fokker-Planck relation which includes

collisions and represents the particles driven by gravity is presented. The Fokker-Planck

equation that includes the collisional term is

10
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∂f

∂t
+ v · ∇rf +

(
g − γ

m
v
)
· ∇vf (1.11)

=

∫ (
f(vi)f(vj)− f(v′i)f(v′j)

)
σ(vi,vj → v′i,v

′
j)dΩ

′d3vid
3vjd

3v′i

Constraining the scattering probabilities when (vi,vj) →
(
v′i,v

′
j

)
, each particle with

the differential scattering cross-section has the interaction between them. In particular,

this occurs within the so-called inverse collision by interchanging the particles of initial

and final states. The original and inverse collisions are identical to the Fokker-Planck

equation

σ(vi,vj → v′i,v
′
j) = σ(v′i,v

′
j → vi,vj) (1.12)

The cross-section, σ(vi,vj → v′i,v
′
j) ≈ W (v|v′)P (v, t) can be found from the Markov

chain Monte Carlo methods. Many interaction distributions of a stochastic velocity v

involve a local thermodynamic equilibrium in the diffusion coefficient as given by the

Einstein relation. This allows us to consider P (v, t) = P (v) for enough time. When the

condition of detailed balance is satisfied, we have

σ(vi,vj → v′i,v
′
j) = W (v|v′)P (v) (1.13)

where W (v|v′) is the cross-section probability of the system which changes from a

state v → v′. For a system in thermodynamic equilibrium between the state rateW (v|v′)

and the reverse W (v′|v), the detailed balance and Metropolis-Hastings algorithm finds

that

11
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W (v|v′)P (v) = W (v′|v)P (v′) (1.14)

Under the detailed balance and Metropolis-Hastings algorithm, the probability ratio

imposes the condition of detailed balance as

W (v|v′)
W (v′|v)

=
P (v′)

P (v)
(1.15)

Thus the probability density ratio can be derived from the solution of the Fokker

Planck equation as

P ∼ f = exp

(
− m

2Dγ
(v − v̄)2

)
(1.16)

where v̄ is mean velocity.
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Figure 1.4: Monte Carlo Simulation example of the distribution of velocity using
Metropolis algorithm by the principle of detailed balance on a semi-log scale
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Another equilibrium of a stochastic probability f(r,v, t) in collisional term is a stochas-

tic process given by

f(ri,vi, ti)f(rj,vj, tj) = f(r′i,v
′
i, t

′
i)f(r′j,v

′
j, t

′
j) (1.17)

The entropy for a stochastic process is defined by

S = −kf ln f (1.18)

Above equilibrium, it has a granular jamming condition because of ∂S/∂t = 0.

With a MC method, the velocity distribution is theoretically derived by the detailed

balance and Metropolis-Hastings algorithm using the Langevin equation associated with

the Fokker-Planck Equation. The jamming condition in granular dynamics driven by

gravity may be approached in order to allow for a probability distribution.

1.1.3 Mass flow rate in hopper

Some pattern formation in the flow zone is proposed by Brown and Hawksley (1947).

Kvapil (1959) described the flow of primary and secondary patterns. The primary pattern

of granular materials is gravity driven and the secondary pattern performs on the aperture

of the rapid flow. The discharge patterns are compared with funnel flow and mass flow

by stagnant regions, Nguyen, T. (1979).

There are a number of methods to calculate mass flow rate from hoppers. The mass

flow rate of pebbles through orifices was derived by Beverloo (1961) and Johanson (1965)

for distinct types of mass flow and funnel flow. Figure 1.5 shows a schematic diagram of

a conical hopper. The geometric parameters are the orifice size D0, an angle α, and the

diameter D of a cylindrical hopper.
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Figure 1.5: Schematic of a Pebble Bed Reactor showing vertical cross sections of a
cylindrical vessel with a conical hopper: Left-side Beverloo (1961), Funnel flow and
Right-side Johanson equation (1965), Mass flow

The Beverloo equation for the flow of rate W gives

W = Cρ
√
g (D0 − kd)5/2 (1.19)

where d is the diameter of pebble, k is a constant to be determined for a kind of particle

and hopper properties (wall effect), ρ is packing density and C is a discharge coefficient

to be determined experimentally from dissipation of inter-particle forces during contact.

The Johanson equation is derived from a semi-empirical model to predict the flow

rate from mass flow.

W = Aρ

√
D0g

(1 +m) tanα
(1.20)
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where α is semi included angle of the hopper, ρ is packing density , A is a discharge

coefficient and the value of m is one (m = 1) in a conical hopper.

1.2 Statistical Mechanics between the free volume

function and the coordinate number

Pebble packing fraction can be investigated to determine the jamming or rocking condi-

tion in Pebble Bed Reactors with cylindrical cone shaped geometries.

The pebble bed volume fraction is φ = Nv0/V , where V is the fixed container volume

and the pebble volume is πd3/6, where d is diameter and N is the number of pebbles.

Figure 1.6: Voronoi diagram of modified source code voro++

The volume of the right cylindrical portion of the pebble bed is given by

Vc =
π

4
D2Hc (1.21)

where D is the reactor diameter and Hc is the height of the cylindrical portion of the
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pebble bed at the start of recirculation.

The volume of each conical portion of the pebble bed is given by the volume of a

circular cone frustum and hence is

Vf =
π

12
Hf

(
D2 +D2

c +DDc

)
(1.22)

where the vertical height Hf from the base cone angle mesured from the horizontal is the

height between Dc and D.

The total volume is

V =
π

4
DHc +

π

12
Hf

(
D2 +D2

c +DDc

)
(1.23)

A different approach is to generate a Voroni diagram for the vertices plane between

particle and their neighbor list dealing with the polyhedron. Calculations of edges of the

intersection boundary are computed by the voro++ code, Rycroft, Grest, et al. (2006).

The hopper shapes are modified to compute these Voroni diagram as shown in Figure 1.5.

Granular Structure Disorder plays a crucial role in statistical physics for the system

of transportation in a phase transition. Recently, several important questions arose from

Torquato and Stillinger (2010). In order to answer these questions, the family of vol-

ume fraction has not been classified by the parameters controlling a geometric structure.

The geometric structure analysis presented the critical point at which a phase transition

occurs. The critical point scale of the coordination number implies that changes in gran-

ular structure occur on a volume fraction. These methods are designed such that we can

analytically develop a unified concept for the volume fraction and void fraction. It has

been studied in simulations and experiments (Mehta, Barker 1991; Rintoul, Torquato
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1996; Makse, Johnson, et al. 2000; Pugnaloni,Barker 2004; Zhang, Makse 2005; Aste

2006; Aste, Saadatfar, et al. 2006; Song, Wang, et al. 2008) where the phase transition

can be inferred except for limited scale-up of packing fractions. In these cases, we have

to deal with the whole system, which can be characterized in terms of granular ensemble

originated by Edwards and Oakeshott (1989), which is defined from the configurations of

ensembles in terms of the free volume function and compactivity. An important role of

granular dynamics is to allow the volume fraction to be expressed in terms of the Kissing

Number. Although a volume function exists on the macroscopic scale, the mesoscopic

scale, and the microscopic scale, the main characteristics of the granular sphere packing

fraction employs Random Loose Packing (RLP) (Epstein, Young 1962), Random Closed

Packing (RCP) (Bernal, Mason 1960), Crystalline Structures, and the Kepler Conjecture.

Under these circumstances, the sphere packing condition is indispensable and the critical

coordination number of the degenerate system can provide direct access to the configu-

rations. There are many previous theoretical and experimental results for N monosphere

particles confined in a finite volume V . These methods are designed such that we can

analytically develop a unified concept for the volume fraction and void fraction of interest.

To study one of the simplest granular systems, the volume function has been studied

without answering the question of whether it is able to create consistence or not. We

are developing a new theoretical approach to investigate the behavior of granular phase

transitions. First of all, in this modeling approach, we allocate the free volume den-

sity function of the nearest coordinate number to delineate the parameters with physical

interpretation. The analysis can be influenced by compactivity. The concept of a con-

tinuous volume function is employed until either the Kepler Conjecture, or RCP max

is generated. It can be used to fit values and formulate the model equation and phase

transition terms for physically reacting interactions of each particle of structured packing
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condition.

The free volume density function is defined in terms of the ratio of void fraction, ε to

volume fraction, φ. w ≡ ε/φ, the relation with ε = 1− φ and φ = Nv0/V with a single

sphere volume v0, and the number of particle, N limited the maximum free volume

density value wk ≈ 0.3505 from the Kepler Conjecture, φk = π/
√

18.

For a localized system, the free correction volume density function with the com-

pactivity Γ, where the coordinate number z gives we should consider

w̃ ≡ ε

φ
− εf

φf

=
1

φ
− 1

φf

≡ 1

eβz−α − g (Γ)
(1.24)

where g (Γ) is the compression term and φf is the maximum volume fraction limit.

This distribution describes the correction volume function by the coordinate number.

For states with mean coordinate number, where eβz−α >> g (Γ) gives w̃ ≈ e−βz+α,

and assuming g (Γ) ≈ 1 and eβz−α << 1 using Taylor expansion gives eβz−α ≈ 1 + βz

(when α = 0) to w̃ ≈ 1/βz, these approximation methods agree to the inverse of the

coordination number (Aste, 2006; Aste, Saadatfar et al. 2006; Song, Wang et al. 2008).

We found the value β−1 = 2
√

3 with the data k value from Song, Wang et al. 2008,

but their value is from numerical regression, while φ → 0, w̃ → ∞ and φ → ∞, w̃ → 0

correspond in the present treatment.

Solving the volume density function yields

z = zc + k ln

(
1− Γ +

1

1/φ− 1/φf

)
(1.25)

where the critical coordination number zc = α/β , k = 1/β and g (Γ) = 1− Γ.

Figure 1.7 (top) shows the free volume density function vs the coordinate number

diagram. In a portion of the plane between z = 4 to z = 6 in the RLP-RCP line,
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Figure 1.7: The coordinate number and free volume function in the New Model region
(top), and the data of Makse, Johnson 2000; Zhang, Markse 2005 fitted by the New
model (bottom), also the configuration of RLP and RCP
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Wang’s data and the new model are identical. We could provide a reasonable statistical

interpretation, of evidence, to a critical coordination number of one sort. Certainly, we

determine the various ranges to divide into the two classes of frictionless and frictional

spheres along with the mean coordination number. For frictional spheres, the original

data are taken from references listed as shown in Figure 1.7 (bottom). Equation (1.25)

was fit to the data to determine the mean value in good agreement with frictional zc =

4. At the level of a different compression rate, the prediction line beyond the data

corresponds to the limit of maximum packing fraction (Kepler Conjecture). The mean

coordination number of frictionless zc = 6 is in good agreement with a previous result

(Mehta, Barker 1991) in accordance with increasing Γ. Investigation of the transition of

granular dynamics to the existence of an essentially volume free function and localized

critical coordination numbers was also performed. The equation of such highly nonlinear

structures fits experimental data shows the fundamental interest and possible relevance

to the jamming transition (Appendix A).
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Chapter 2

Theory and Analysis

2.1 Euler–Lagrange Dynamics for granular systems

A Molecular Dynamics (MD) Simulation is based on Newton’s second law on time evolu-

tion within the framework of classical mechanics. The motion of granular dynamics can

be described by Euler-Lagrangian dynamics. From a comprehensive point of view, the

Euler-Lagrangian dynamics is presented to clearly and easily identify the pair interaction

and contacting time among the individual particles. The kinetic energy and the potential

energy are used to obtain the Lagrangian of the particle with the generalized coordinate

and its associated granular interaction term. In this work, the system of N particles was

the only constraint used to move the particles through the external gravitational force

and the energy dissipated in friction. The MD simulation or Discrete Element Method

(DEM), originally proposed by Cundall and Strack (Cundall and Strack 1979), has been

developed and used as a critical numerical tool to simulate granular dynamics. The

theory becomes very complex for an analytical solution when a large number of bodies

are involved within the system. However, for the purpose of explaining the phenom-
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ena, classical interactions of thermodynamics and statistical mechanics are often used to

characterize properties of the system. The molecular dynamics categorized as DEM for

granular dynamics can be used to represent the soft particles of the PBRs because the

kissing particles are allowed to overlap during the contract time. Thus, the system con-

siders nonconservative forces from friction. To simulate MD, previous work was required

to explain the forces through analyzing the energy distribution. Lagrangian dynamics

generally states that the pebble’s motion, which describes the transitional motion of the

center of mass and the rotational motion about the center of mass, has non-conservation

of the frictional force. Consequently, this form of Lagrange’s equation represents the

underlying interaction and therefore becomes advantages. This approach can easily de-

scribe the system.

For a granular system of N particles moving in three dimensional space with con-

straints, D’Alembert’s principle requires knowledge of the constraint forces, (typically

and static), kinetic frictional force and particle sliding. What was needed was a de-

scription of the system that makes compromises when dealing with the constraint re-

lations. D’Alembert’s principle provides such a description for systems involving holo-

nomic or nonholonomic constraints in allowing virtual displacements, δri =
∑
a

∂ri

∂qa
δqa in

contrast with a real displacement dri. There are two types of constraints. The first one

is holonomic constraints which can be solved for using kinematics; here there is no work

(F
(c)
i · δri = 0) because virtual displacements δri are orthogonal to the corresponding

constraint forces F
(c)
i . The second is nonholonomic constraints which must be solved for

using dynamics; here consequently we have a work term (F
(c)
i × δri 6= 0).

As a consequence of these constraint relations, this problem is solved by choosing

Lagrange’s equation. The Euler–Lagrange equations, L (qa, q̇a) in the generalized coor-
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dinates, qa for a discrete system is

d

dt

∂L

∂q̇a
− ∂L

∂qa
= Qa (2.1)

Here L ≡ T − V − U is the Lagrangian of the system.

The generalized constraint forces, Qa are derived from D’Alembert’s principle for the

virtual work for applied forces. Two nonconservative components are associated with

respect to q̇a and qa. The generalized constraint forces on the right-hand side are given

by

Qa ≡ F
(c)
ij ·

∂rij

∂qa
= F

(f)
ij · ∂rij

∂qa
− ∂F
∂q̇a

(2.2)

where F
(f)
i is only for the friction force and F is known as Rayleigh’s dissipation function

F = 1
2

∑
a,b

cij q̇aq̇b (if cij = cji , the symmetric tensor).

The Lagrange equation with Rayleigh’s dissipation function and contact friction be-

comes

d

dt

∂L

∂q̇a
− ∂L

∂qa
+
∂F
∂q̇a

= Q(f)
a (2.3)

where Q
(f)
a = F

(f)
ij · ∂rij

∂qa
. The generalized constraint force is presented by a frictional

force.

In the case in which particles were assumed to be the spherical rigid bodies located in

the gravitational field, the generalized coordinates were decoupled into the center of mass

coordinates (the axes of the inertial coordinate system) and the Euler angles (θ, φ, ψ).

Since the spherical rigid body is symmetrical for the Euler angles, the moment of inertia

for an ideal homogeneous sphere of radius R is I = 2
5
mR2 is about the principal axis
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of the center of mass. From the relations above we can compute one term relating the

kinetic energy T of the translational motion and the spin rotation itself about the center

of mass. Another term relating the potential energy of the gravity potential V and a

pairwise interaction potential U (rij), is given where the distance between the centers of

the two particles is rij = |ri − rj| with respect to a fixed frame and ri, rj is the relative

position vector of the center of mass mi, mj.

The distance between particles i and j about a fixed point O, the relative position

about the normal and tangential direction, is independent. Above all, the relative an-

gular velocity in the rotating frame is contributed to the angular displacement from the

equation

ωi ×
Ri

Ri +Rj

rij + ωj ×
Rj

Ri +Rj

rij = ωij × rij (2.4)

The relationship of the overlap displacement is defined as

δrij= (r̂ij · δij) r̂ij + r̂ij × (δij × r̂ij)−
∫
ωij × r̂ijdτ (2.5)

Here the center of angular velocity is ωij ≡ (Riωi +Rjωj) / (Ri +Rj), with angular

velocities ωi and ωj in a rotating coordinate frame with each particle at the center of

mass of the system during contact time tc.

The relative normal displacement is

δrij‖ = (r̂ij · δij) r̂ij (2.6)
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Figure 2.1: Schematic of the vector analysis contacting on particle acting j → i
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Figure 2.2: Schematic of the interaction between two particles at contact with position
vectors ri, rj: The left figure of a set of a overlap shape and the right figure of the
deformable shape of Hertz-Mindlin force

and the relative tangential displacement is

δrij⊥ = r̂ij × (δij × r̂ij)−
∫

tc

ωij × r̂ijdτ (2.7)

A comparison with the above gives the relative velocity as

drij

dt

∣∣∣∣
s

= ṙij − ωij × rij

= (r̂ij · vij) r̂ij + r̂ij × (vij × r̂ij)− ωij × rij

where r̂ij = rij/rij and rij = ri − rj, the relative velocity in term of j.
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The relative velocity ṙij = vij = vi − vj has the components of the relative normal

displacement

vij‖ = (r̂ij · vij) r̂ij (2.8)

and the relative tangential velocity is given by

vij⊥ = r̂ij × (vij × r̂ij)− ωij × rij (2.9)

where r̂ij × (vij × r̂ij) = vij − (r̂ij · vij) r̂ij .

When granular particles have pairwise collisions, they collide instantly and have an

infinitesimally small time for the Hertz’s potential. This impulse imparts interactions

between each particle. Figure 2.2 shows analytic geometry, before instantaneous defor-

mation, at which point the bodies touch at an adjacent point. The curvatures of the

two bodies are represented with radii of curvature Ri and Rj. At the contact area, the

bodies are compressed with smooth curvature. The shape of the particle is changed by

the curvature due to the elastic restoration force. Previously, Hertz’s theory had been

used with a quadratic equation. However, contact pressure provides displacement under

the surface. This contact pressure is distributed throughout the curvature. The pressure

distribution function acts at each contact radius a. The distribution of normal stress in

the contact area as a function of distance was also reported (Johnson 1985). The granular

particles behave like hard sphere which contact one another with a deformable contact

force. The forces between the two particles can be approximated well by Hertz theory

of elasticity. The granular interaction potential is a power law from Hertz theory. Hertz

contact is presented to determine each granular surface interaction for granular flows.

The generalized expression for the normal contact force acting on a granular body, in

which the governing equation is either loaded in tension or in compression, is obtained
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from the stress and strain relation of the material. The Hertz potential is derived from

the results of stress-strain analysis that are attributed to granular flow sensitivity. Gran-

ular particle interactions have a virtual depth in the relation with a remarkable normal

contact of relative deformation in terms of a tangential contact by a friction on a contact

surface. A substantial solution to the problem of a normal contact has been known as

Hertz’s theory.

We are led to the relations of the overlap displacement as defined by δrij where the

normal displacement δrij‖ ≡ Ri + Rj − |ri − rj| is the depth of indentation or normal

overlap for the contact between the two bodies of radii R1 and R2. When δrij‖ > 0, a

contact force is generated that otherwise would have zero potential. The noncohesive

granular interaction is described by Hertz-Mindlin potential between particles,

U (rij) =
2

5
kδr

5/2
ij (2.10)

where kn = 4
3
E∗
√
R∗ is the stiffness of the pairwise interaction proposed in Hertz theory

(Hertz 1895) and the tangential term kt = 8G∗
√
R∗ is the tangential force (Mindlin

1949) with the effective Radius R∗ = RiRj/ (Ri +Rj) and the effective Young’s modulus

E∗ =
(

1−ν2
i

Ei
+

1−ν2
j

Ej

)−1

, E the Young’s modulus and the effective Shear modulus is G∗ =(
2(2−νi)(1+νi)

Ei
+

2(2−νj)(1+νj)

Ej

)−1

. Poisson’s ratio is ν for the contacting particle i and j

respectively (Brilliantov, Spahn et al. 1996; Silbert, Ertas et al. 2001, Zhang and Makse

2005).

Comparisons of this with the Lagrangian obtained previously can be expressed by the

gravitational potential

V (ri) = miri · g (2.11)
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where g is the gravitational acceleration vector.

The pair dissipative function can be derived from Rayleigh’s dissipation function

F =
1

2
γm∗δṙ2

ij (2.12)

where γ is a dissipative constant or viscous damping coefficient given a coefficient of

normal restitution e for a contacting time with normal and tangential contact.

When the particle i is moving to another particle j at contacting time, it follows that

the force of constraint exerted by kinetic friction (µk, the kinetic coefficient of friction) of

each particle has done real work after the collision. Thus the virtual displacement, δr, is

tangent to the other particle and orthogonal to the constraint force. If both particles are

at a rest state (µs ≤ µk), the sphere at contact experiences the only force on the pebble

from the static friction (µs, the static coefficient of friction) which is perpendicular to the

curved part of particle. The normal and tangential direction is independent, and then

each term must be separate. The motion of the ith particle is given by a contact force

and a damping force during collisions. If the tangential force is generated, the generalized

constraint force is Q
(f)
a = −sign (δrij⊥) min

(
µ
∣∣Fij‖

∣∣ , |vij⊥|
)
r̂ij⊥.

Thus, the Lagrange’s equation of the net binary system can be expressed in term of

rij

L =
1

2
m∗ |δṙij|2 − U (rij) (2.13)

where m∗ = mimj/ (mi +mj) is the reduced mass of the system.

As a consequence of the decoupling, the Lagrange equations of motion separate into

two equations, one for the center of mass coordinates and another for the Euler angles.

Each set can be analyzed independently to apply this prescription to a two body problem
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for a virtual displacement. The present simulations use a normal and tangential contact

model comprised of the following:

|δṙij|2 =
∣∣δṙij‖

∣∣2 +

(
1 +

1

ζ

)
|δṙij⊥|2 (2.14)

where ζ =
(

1
miĨi

+ 1
mj Ĩj

)−1

from the particle moment of inertia Ĩi = Ii/miR
2
i and Ĩj =

Ij/mjR
2
j about the torque acting on two particle.

Finally, we can implement Euler-Lagrangian dynamics to find out the governing equa-

tion and contact time used to simulate the MD method. Although the theoretical ap-

proach is Hertz’s contact to the Lagrangian solution, problems arise including general

friction through contacting area where Fji = −Fji, Newton 3rd law and the tangential

component Fij⊥ and δrij⊥ which can be described to meet the requirement of Coulomb

yield criterion if |Fij⊥| < µsFij‖. Until the particles are separated, the potential calcula-

tion is performed for the interaction only once on each pair of particles. The equations

of motion follow directly from the Lagrangian formulation described above.

The normal component of the contact force can be written as

Fij‖=knδr
3/2
ij‖ − γnm

∗vij‖ (2.15)

The shear component of the contact force can be written as

Fij⊥ = −kt

√
δrijδrij⊥ − γtm

∗vij⊥ (2.16)

The equation of motion will be expressed in normal and tangential directions on con-

tact condition, |Fij⊥| > µsFij‖, Fij⊥ = −µkFij‖v̂ij⊥ and γtm
∗vij⊥ which generates the

rolling friction from the center of particle j to the center of particle i. This component
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in the direction of motion is attributed by performance of the Hertz-Mindlin theory to

improve the terms of the tangential force. The simulation will demonstrate the essential

results of the contact deformable interaction. Two body forces are represented by the

potential, which is enough to permit the surface effects. The governing equation, con-

structed from two-body functions, is applied to the many body system problem with a

contact dynamic using a MD simulation (or DEM).

2.2 A Compressible Kinematic Model for Particle

Flow in Pebble Bed Reactors

Granular dynamics of pebbles in a Pebble Bed Reactor (PBR) is very complex due to

many body interactions as well as the long range interactions that arise from stress fields.

Of particular interest in a PBR is the arching or locking phenomenon, which hinders the

ability of the fuel pebbles to drain out during refueling. In general, driven granular flow

is governed by the geometry and external boundary conditions of silos and hoppers, and

material properties such as contact friction and elasticity. Evidently, a firm understanding

of the pebble flow mechanisms plays an important role for a robust design of a Pebble

Bed Reactor.

A natural way to describe granular motion is through the continuum approach where

the grains are not thought to be composed of discrete particles but rather, they are treated

as continuously filling the region they occupy. In this section, we propose a new kinematic

model for granular flow that explicitly accounts for changes in the density field. The

present model combines the compressible continuity equation and the phenomenological

velocity relationship developed by Nedderman and Tüzün (1979) for free-flowing granular

flows. Approximate solutions of this model show that finite density variations result in

31



www.manaraa.com

non-Gaussian velocity profiles. This observation is consistent with several experimental

data on controlled granular flow (Beverloo, Leniger, et al. 1961; Choi, Kudrolli, et al.

2004; Choi, Kudrolli, et al. 2005). Our preliminary results thus indicate that the density

field can play an important role in granular flow dynamics and may have an effect on

pebble jamming in a PBR during refueling.

An analytic approximate solution of the Semi-Empirical New Kinematic Model with

the boundary conditions is developed for a compressible packing condition. It is based

on the velocity description of the packing density in hopper. The packing structure can

represent the jamming phenomenon by its flow types. The analytical formulas for the

quasi-linear diffusion and convection coefficients of the velocity profile are obtained. In an

attempt to say precisely what a velocity distribution is, the probabilistic interpretation

is used to describe the macroscopic quantities such as density, flux, mean velocity, and

void fraction etc. In the kinematic model proposed by Nedderman and Tüzün (1979),

it is assumed that the transverse velocity is proportional to the gradient of the vertical

velocity as shown below

v⊥ = −b∇⊥vz (2.17)

where the total velocity is defined as the vector sum of transverse and vertical compo-

nents (v ≡ v⊥ + vz), and dissipation in collisions is described by means of a parameter

which is related to the coefficient of diffusion length b. The empirical constant can be

used for determining a calibration and validation of any model in a macroscopic velocity

field with the limitation to the kinetic energy that is lost in collisions and shear flow.

These parameters may depend on the vertical height from the hopper and the bound-

ary conditions. The reason for this inconsistency problem centers on the experimental
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interpretation of Gaussian distribution. The velocity flow adjacent to the wall of left

and right boundaries is physically constrained to flow parallel or tangent on the wall. If

the velocity vector is tangent, then its normal component must clearly be zero. If the

Neumann boundary condition is replaced by the requirement that the derivative of the

velocity be zero at the edges on the wall, v · n̂ = 0, where n̂ (≡ ∇Ω/ |∇Ω|) is normal

direction to the surface Ω function of the wall.

When combined with the incompressible continuity condition, (∇ · v = 0), the phe-

nomenological model given by Equation(2.17) results in a diffusion-type equation for the

vertical velocity. The solution, which is a Gaussian, compares favorably to experimental

data from free-flowing granular systems. However, small non-Gaussian deviations are

observed for slow granular flows and closer to the drainage orifice.

In this section, it is proposed that the pebble density field can introduce a percep-

tible change to the granular flow dynamics. In our new model, a compressible continu-

ity condition ∇ · (ρv) = 0 is introduced along with the constitutive equation given by

Equation(2.17). This results in the following convection-diffusion equation:

∂vz

∂z
= ∇⊥ · (b∇⊥vz) +

∇⊥ρ

ρ
· b∇⊥vz −

1

ρ

∂ρ

∂z
vz (2.18)

where ρ is the density field, not a single particle density. Note that the compressible

model has convection terms that arise from the gradients in the density. The above

equation can be solved exactly if the density variations are considered to be weak. For

this purpose we define two parameters λ and κ as

λ ≡ ∂b

∂x
+
b

ρ

∂ρ

∂x
and κ ≡ −1

ρ

∂ρ

∂z
(2.19)

Equation (2.18) now can be expressed (in two dimensions, the radial spatial variable
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x and z) as

∂vz

∂z
= b

∂2vz

∂x2
+ λ

∂vz

∂x
+ κvz (2.20)

A solution to the above equation is

vz = exp

[(
κ− λ2

4b

)
z − λ

2b

]
u (x, z) (2.21)

where u (x, z) satisfies the auxiliary parabolic equation

∂u (x, z)

∂z
= b

∂2u (x, z)

∂x2
(2.22)

Now with vz = f (x, 0) at z = 0, the equation is

u (x, 0) = f (x) exp

(
λ

2b
x

)
≡ g (x) (2.23)

For the domain −∞ < x <∞, we can write the solution formally as:

u (x, z) =

∫ ∞

−∞
g (ξ) exp

(
λ

2b
x

)
G (x, ξ, z) dξ (2.24)

where the kernel G is given by:

G (x, ξ, z) =
1√

4πbz
exp

[
−(x− ξ)2

4bz

]
(2.25)

If g (x) = Qδ (x) where Q is a constant flow rate which is proportional to mass flow

rate at an orifice (initial condition), the solution for u is given by the following Gaussian

expression
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u (x, z) =
Q√
4πbz

exp

[
− x2

4bz

]
(2.26)

The final solution for the pebbles’ vertical velocity field (with an additional symmetric

condition imposed at x = 0) is given by:

vz =
Q√
4πbz

exp

[(
κ− λ2

4b

)
z

]
exp

(
− x2

4bz

)
(2.27)

Vertical velocity profiles with the Nedderman and Tüzün kinetic model (old, middle

curve) and the new compressible kinetic model (positive and negative κ) at two different

vertical (z) locations (z=4, z=10) as shown in Figure (2.3). λ and κ are small parameters

in the new model. Notice the non-Gaussian deviations with relatively small density

variations.

Figure 2.3: The effect of λ and κ on the vertical flow profile
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There are several interesting features for the compressible flow solution. We can

first note that when λ and κ are identically equal to zero, the solution collapses to the

Nedderman and Tüzün Gaussian profile. Changes in density are reflected through the

additional (first) exponential term. Recall that λ and κ are the density gradients in z

and x directions, respectively (assuming b is constant). Since λ and κ can be regarded as

small parameters in the first approximation, the effect of density gradient in the transverse

direction (x) is small compared to that in the vertical direction (z). Kinematic models, as

mentioned before, are successful for free-flowing fast granular flows. When the drainage

flow becomes weaker, the effect of density variations (and the attendant locking and

arching phenomena) can become prominent. In a PBR, the pebble flow is intermittent

and a central challenge is to characterize the flow fields in such intermittent conditions.

With a Compressible Kinematic Model designed for a packing density, the velocity profile

is theoretically derived by the compressible packing condition. The vertical velocity is

influenced by the term of λ and κ. In solving variable coefficients, the problem may be

approached to allow a packing density distribution which is a packing structure by density

to explain the jamming phenomenon. We have initiated an approach based on Molecular

Dynamics Simulation or Discrete Element Methods for characterizing the pebble flow

conditions in a PBR during refueling.
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Chapter 3

Simulation

Classical Molecular Dynamics (MD) simulations have been performed using the Large-

scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and an additional sim-

ulation of LAMMPS Improved for General Granular and Granular Heat Transfer Sim-

ulations (LIGGGHTS). These codes are based on the Open Source MD code written

in C/C++ language of the time evolution of the simulating system in the velocity Ver-

let algorithms (or Gear predictor-corrector algorithm) in the 3-dimensional space. MD

simulation (or DEM) algorithm is used to determine the position, the velocity, and the

acceleration from the initial positions and velocities. The translational and rotational

equation of each particle from total force and total torque are given by

∂2ri

∂t2
=

Fi

mi

and
∂2ωi

∂t2
=
τi
Ii

(3.1)

The accelerations, velocities and displacements are updated from the previous time-

step using a time integration scheme. It is assumed now that the evolution in time of

the considered system includes the neighboring cell because it is within the cutoff radius

(rcut), where rij < rcut. At each time step, the positions ri of the force on cutoff range
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is neglected as Fcutoff
∼= 0 which leads to much faster precessing for computational

efficiency.

It has been used successfully to demonstrate that pairwise interaction between par-

ticles is described by the Hertz-Mindlin contact forces as a dynamic processing and the

time evolution in three dimensions (3D). Bulk solid motion of many particles is a discon-

tinuous phenomenon that requires statistical analysis. By using the results of numerical

simulations, the data visualization approach (ParaView) provides a sophisticated concept

to be comprehended more clearly by granular characteristics. Before computational sim-

ulation, the simulation design is associated with the scale up of the Pebble Bed Reactor

in order to ensure the safety analysis. The reactor geometry enables further detailed

information to be obtained which is relevant to measure radioisotope particle tracking.

3.1 Design and Scale up for Pebble Bed Reactors

Pebble Bed Reactors (PBRs) implement the scale-up properties when accounting for a

type of very high temperature reactor (VHTR). The density transmission gauges can be

calculated by the maximum length between the source and detector response. This is

based on the radiation attenuation in the pebbles granular material where the reactor

container is included within its associated packing fraction. Once the evaluation of PBRs

diameter is carried out, a gauge transmission of the gamma-ray radioisotope tracer is im-

plemented. This method is used to quantitatively analyze the two phase (gas-pebbles)

mixture and a transmitted peak counting rate which is determined by our Forward Scat-

tering Gauge Model (FSGM). FSGM uses the mixture attenuation coefficient of the

packing from a single characteristic photon. The source is an isotropic gamma ray source
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of Cs 137 with an activity of 10µCi at 662 keV . The spectrum of a 2×2 Nal(Tl) detector

is taken to account for the total number integrated single photopeak according to the

detection response with full-energy-peak efficiency. Effective and maximum scale can be

determined using a relative approach with/without pebbles. The approach is based on

using transmission techniques to measure the density thickness and the error analysis

can be obtained from an associated accurate length prediction. The limitation is that

the sensitive mass attenuation coefficient becomes difficult as to the composition of re-

actor’s alloy in pursuit of the interest region shape, as in the case of the hopper. This

preliminary assessment allows us to make PBRs configurations with the critical scale-up

conditions. The main results are derived from FSGM, where a scale uncertainty is taken

into consideration. For the size of pebble diameter, the discrete displacement is indicated

to cognize the detection resolution.

The Forward Scattering Gauge Model (FSGM) shows that the optimum design crite-

rion is based on the minimum relative thickness error, σ(t)/t. The corresponding counting

rate of the γ-rays is represented by Lambert-Beer’s law

R (t) = fmixR0 exp (−2µww − µmixt) (3.2)

Where R (t) is the gauge response for inner diameter t in dps(Bq) as substituting in terms

of µmix = µgε + µpφ, where µmix mix is the linear attenuation coefficient and ε and φ

are the volume fraction of gas and pebbles, respectively (1 = ε+ φ), and µw is the linear

attenuation coefficient of the wall and w is thickness of wall on the cylindrical vessel wall

and R0 is the source strength. fmix is the detector efficiency factor, that the counting

yield can be expressed as the product of several independent detection parameters: Cs-

137, 0.86 branching ratio to 662 keV, NaI(Tl) 2×2 detection efficiency = 0.9, photopeak
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efficiency = 0.5, and geometric solid angle= πr2/4πt2.

Then inner diameter t, between source and detector, shows its results below:

Table 3.1: Detector response results using FSGM

inner diameter t the ratio of response counting rate (cps)

50cm 7.64× 10−7 2.83× 10−1

100cm 4.39× 10−10 1.62× 10−10

The standard deviation of the distance measurement σ(t) is given in terms of the

standard deviation of the gauge response σ(R) as

σ(t) = σ(R)/

(
∂R

∂t

)
(3.3)

Where σ(R) =
√
R/τ is given by Poisson statistics and τ is the time over which the

gauge response is taken. Finally, returning to the original variables:

∂σ(t)

∂µmix

= 0 (3.4)

Thus, the optimum conditions are found to be given by µmixt = 2, when the volume

fraction of marbles is 0.6 and the reactor’s diameter is 18 cm.

The benchmark calculations of previous PBRs in table 3.2 (Gougar, H. D., A. M.

Ougouag, et al. 2004) presented the basic geometry for these initial conditions. The

particle’s diameter is the ratio of the core height to that of the core diameter.

From the results above, the scaled PBR has been designed to have a 30 cm core

diameter and 45 cm cylinder height which was dictated by the particle’s diameter, 1 cm.
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Table 3.2: Real Pebble Bed Reactor scale

HTR-10 HTER M200 PBMR GE-MPBR VHTR300 VHTR600 AVR

core D 180 300 350 144.8 300 500 300
core H 197 940 850 926 875 950 280
pebble d 6 6 6 6 6 6 6
D/d 30 50 58.33 24.13 50.00 83.33 50
H/d 32.83 156.67 141.67 154.33 145.83 158.33 46.67
H/D 1.09 3.13 2.43 6.40 2.92 1.90 0.93

The ratio is as follows, 30: 45: 1. This is indicated as (core diameter D/pebble diameter):

(core height H/pebble diameter d): (core height/core diameter).

Generation IV reactors (Gen IV) will be developed for the criteria system of the

VHTR (Very High Temperature Reactor). Pebble Bed Reactors (PBRs) of a cylindrical

vessel with a conical hopper will be implemented in the scale-up properties. This includes

the following components: a helium coolant gas to boost the heat transport, graphite-

moderator pebbles and fuel pebbles with their mixing recirculation in the reactor system.

First of all, the reactor’s scale will exhibit normal reactor temperature while adjusting

the PBRs geometry (enriched fuel and moderator amounts) and its associated power

cycles for determination of the burn-up. We focus on the PBRs ratio of the reactor core

diameter/height and the hopper angle in terms of the stresses by a Continuum Mechanics

(bulk solid) given by the pebble particle’s size. Scale-up supports the following parame-

ters: transient granular dynamics (mass flow rate and packing conditions) and radiation

detection-optimization conditions for tracking the pebbles. Secondly, the performance

of radioisotope tracking within the scaled reactor in the lab setting will determine the

preliminary analysis.
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Cylinder 

Conical 
Hopperα

Orifice
Tube nozzle

Figure 3.1: Schematic of Pebble Bed Reactor showing vertical cross sections for a cylin-
drical vessel with a conical hopper
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Due to a heterogeneous medium, where there is a random packing condition of peb-

bles, tracking the pebble as an individual radioisotope particle within the reactor will

result in a highly inaccurate result for position detection. A time-dependent mass can be

calculated by a regular interval along the reactor height. This is based on the mass flow of

the pebbles granular material where the reactor container is included within its associated

packing fraction. Effective and maximum scale can be determined using a relative ap-

proach with or without pebbles. The approach is based on using LAMMPS/LIGGGHTS

to measure the density and their analysis can be obtained from an associated mass flow

type prediction. The limitations imposed are the granular mechanical properties char-

acterized as angles of the reactor’s geometry in pursuit of the interest of region shape,

as in the case of the hopper. Because it is required to identify suitable control of the

reactor, this preliminary assessment allows us to make PBRs configurations with the crit-

ical scale-up conditions. For the fixed size of the pebble diameter, the optimum design

criterion of the scale up is indicated to reduce the factors.

Pebble Bed Reactors are designed as a cylindrical vessel with a conical hopper. The

conical geometry has an advantage in the stability of axi-symmetric shape function by

passing pebbles through the interior of the reactor under controlled mass flow rates and

the residence time. The benchmark of the scaled PBRs is constructed with a 30cm

core diameter. The particle diameter is the ratio of the core height to that of the core

diameter. As shown in Figure 3.1, the scaled PBRs for this design has been designed to

have a 30 cm core diameter (D) and a 45 cm cylinder height (H) which was dictated by

the 1cm particle diameter (d). The ratio is as follows, 30: 45: 1.5, which is indicated as

(D/d): (H/d): (H/D). The base of the reactor at height z=0 is extended downwards by

a vertical tube nozzle of length 2d. The size of the orifice (B) could be adjusted to be

different with 3.5d, 5.0d, and 6.5d configurations. The angle of the hopper, α, is placed
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on the vertical axis of the cylinder connected to the conical wall, which has a slope of

75◦, 60◦, and 45◦ respectively. According to the size of the orifice and the angle of the

hopper, the boundary mesh of the reactor’s wall is enclosed to incorporate the effects

of stress in configurations from one end to the other through the granular dynamics.

The functionality serving as a three dimensional surface geometry, wall surface mesh,

is generated by using a formatted stereolithography (STL) file created with common

CAD software. Consequently, it is important that the simulation process is designed and

operated with a view to the pebble–wall collision.

All PBRs can be constructed in a scale-up fashion and presented by MD simulation

(LAMMPS/LIGGGHTS) with the governing equations of each particle interaction in

terms of the pebbles being tracked. The important benefit is to evaluate a new geometric

configuration. We will implement the characteristics of pile and discharge in a Pebble

Bed Reactor described as a three dimensional granular dynamics system.

3.2 Simulation Setup and Procedure

In simulations, it is desired to estimate the system of the reactor by dynamically varying

controls for the mass flow rate, the residence time, and the operating system. In par-

ticular, the operating system effectively allows for the circulation of the pebbles. This

is accomplished by creating the pile and the discharge in a natural process, either on

stationary or dynamic patterns in the reactor. Thus one can characterize the effect of

a stationary pattern in the reactor for an extended time or that of a dynamic pattern

in fast throughput. The pile mode and the discharge mode are regulated by the core

bottom.

The principal role is realistic in RBRs systems. The configurations of the initial
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conditions and their associated boundary conditions were generated in preliminary trials.

Pebbles, which had an initial velocity of 1m/s influenced by gravity, are poured into the

reactor as a continuous feed in the defined size of cylinder between z=45d and z=65d

with the diameter of 10d packed in the random packing condition (with maximum volume

fraction limit, 0.64 and mass flow 0.3 kg/sec). The number of identical particles was

20,000, each with a diameter of 1d and a density of 2500 kg/m3. The particles flow

was blocked at the core bottom of the hopper until the pebbles are settled down. In

order to perform a discharge of the pebbles, the mode was obtained from the initial

position condition of all pebbles. This was read from the input file after the pile was

created from the simulation of the pouring of the pebbles. As soon as the bottom

boundary was opened, the type of discharge can be identified by mass flow rate and also

be determined by stress analysis on the fixed wall enclosed inside of the mesh. This

occurs because the reactor was designed to depend not only on the geometry, but also

on the angle of hopper. Finally, in relation to the angle of repose and the orifice size, the

transitions can be distinguished and rationalized with the similarity and the difference.

This allows us to understand the collective behavior and their effectiveness. Therefore,

the crucial discharge condition was determined by an arrangement that occurred between

the characteristics and respective flow rates effects. As a result of using the preliminary

test for optimization of the efficiency to obtain a stable discharge, specific configurations

will be selected and investigated for the analysis concerning these phase transitions in

relation to their packing fraction and the coordination number. In addition, the volume

is calculated in each geometry (Appendix B)

The simulation parameters were applied to all geometric conditions. Identical par-

ticles have similar physical material properties such as Young’s Modulus of elasticity,

Poisson ratio, and frictions (the particle-particle and the particle-wall type) etc. The
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parameter settings were the same as used for the three-dimensional system presented in

Table 3.3. The time step size used was 1×10−6 sec. All data was recorded, including the

position, the transitional velocity, the angular velocity, and the force of each particle.

The granular materials are made up of particles that are substantially mono-disperse

and are described by the following table of the material properties. The empirical cor-

relation between different materials was employed into both the particle-wall interaction

and the particle-particle interaction.

Table 3.3: Physical Properties and Simulation Parameters

Parameter Symbol Units

Particle’s diameter d 10 mm
Particle’s density ρ 2500 kg/m3

Young’s Modulus particle-particle Epp 5× 108 Pa
Young’s Modulus particle-wall Epw 8× 109 Pa
Possion ratio particle-particle νpp 0.3
Possion ratio particle-wall νpw 0.3
Coefficient of Coulomb friction: particle-particle µpp 0.5
Coefficient of Coulomb friction: particle-wall µpw 0.3
Coefficient of Restitution: particle-particle epp 0.35
Coefficient of Restitution: particle-wall epw 0.5
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Chapter 4

Results and Discussion

The characteristics of pile and discharge in Pebble Bed Reactors are investigated to

describe the system of three dimensional granular dynamics. Numerical simulations

are presented by using Molecular Dynamics through the deformable Hertz’s law of the

interaction between particles. A pile of pebbles on the top is dependent on mass flow

rate with initial velocity 1m/s influenced by gravity in the downward direction. The

initial packing fraction of the particles is 0.64 and the number of identical particles is

20,000, each with a radius of 5 mm and a density of 2500 kg/m3. The initial positions

are based on random numbers. Identical particles have physical material properties such

as Young’s Modulus of elasticity, Poisson ratio, and the coefficient of restitution and

friction (the particle-particle and the particle-wall). The particle flow is blocked at the

bottom of the funnel. The simulations are monitored continuously and displayed in real

time on post processing, using Paraview visualization tool. The parameters, such as the

mass flow rate and energy, etc., were calculated from the forces, velocities and positions

of each particle for all simulations at different flow regimes and different geometries

according to the hopper angle and the orifice ratio. The mass flow rate of the piling and
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discharge were used to obtain the regression results from the mass-time plot. The piling

was performed to pour into reactors under the same conditions of the mass flow 1.6852

kg/sec through circular cross section of diameter 6 cm located at core height 45 cm. The

piling and discharge were taken in absence and presence of orifice filter. As the discharge

is controlled by the orifice gate after the piling during 20 seconds, then the mass flow rate

of the discharge was observed whether or not the flow was obstructed due to jamming in

the reactor.

Figure 4.1: Snapshot of piling (left) and discharge (right) with transitional velocity and
normal stress given the angle 45◦ and the orifice size 6.5d
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4.1 The piling in PBRs

Particles are inserted into the reactor at every time step within an initial region until

20,000 pebbles have been inserted under the influence of gravity at which point the reactor

will be filled with particles. The 3D simulation results showed that the pebbles motion is

clearly observed in the snapshots according to their instantaneous velocity (transitional

and rotational) and the forces of the piling system in Figures 4.2 and 4.3. The piling

could be initiated in different types of the reactor to induce the mechanism by which

an initial discharge condition is found that situates the coordination number and the

volume fraction. The piling may also be characterized as a collection of a random packing

condition with spatial-temporal behavior, thus it is used to provide reactor activation for

further reactor processes. The mass flow rate plays a key role in the piling which operates

with the stress by driven gravity and their collision on the wall and thus forming a normal

stress and a shear stress.

The granular dynamics of interacting pebbles in Pebble Bed Reactors has a force chain

or contact stress field. In order to analyze the stresses of contact points in inhomogeneous

media, the result of network forces should generate normal stress on the wall. Also, the

network force part of the Hertz frictional force should produce tangential (shear) stress

on the contact wall. The stress behavior of packing pebbles in silos in view of stress and

strain is

σ = lim
δA→0

δF

δA
(4.1)

Figure 4.4 shows that σn is normal stress and σt is shear stress.
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Figure 4.2: Snapshot of piling and stress mesh with linear velocity given the angle 45◦

and the orifice size 6.5d
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Figure 4.3: Snapshot of force, transitional velocity and angular velocity calculation
showing vertical cross sections split in half and top view given the angle 45◦ and the
orifice size 6.5d at times 3, 6, 9, 12, and 15 sec in SI units
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Figure 4.4: Snapshot of normal and shear stress wall given the angle 45◦ and the orifice
size 6.5d at times 3, 6, 9, 12, and 15 sec in unit Pascal
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4.1.1 Energy system

The energy system is described from a classical interaction energy. The motion of N

monosphere particle in a three-dimensional space is determined by Newton’s equation

expressed to the total forces and torques. The motion of the ith particle moves along

any path in driven gravity force with collisions located at position ri with velocity vi and

angular velocity ωi

fi = mi
d2ri

dt2
=
∑
i6=j

Fij +mig (4.2)

Ii
dωi

dt
=
∑
i6=j

rij × Fij⊥ (4.3)

The total kinetic energy of the system, consisting of the sum of the translational

kinetic and their rotational kinetic energy with ωi angular velocity about the origin, are

related to Euler’s angles, namely,

K =
1

2

∑
i

miv
2
i +

1

2

∑
i

Iiω
2
i (4.4)

The granular temperature is calculated by the mean translational, Kt (Campbell

1990), and the mean rotational, Kr, kinetic energies. The granular temperature is pro-

portional to the mean kinetic energy

K =
1

2

∑
i

miv
2
i +

1

2

∑
i

Iiω
2
i =

3

2
NkT (4.5)

3

2
kT =

1

N

∑
i

(
1

2
miv

2
i +

1

2
Iiω

2
i

)
=

〈
1

2
miv

2
i

〉
+

〈
1

2
Iiω

2
i

〉
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The total gravitational potential is V =
∑
i

migzi, and the total pairwise interaction

potential of an N particle system interacting through a pair potential for Hertz-Mindlin

contact can be written as

Φ =
∑

i

∑
j>i

Uij =
1

2

∑
i

∑
j 6=i

Uij (4.6)

The virial theorem predicts the interaction potential energy is the sum of the pair

force on each particle,

Σ =
1

2

∑
i

∑
j 6=i

rij · Fij (4.7)

where Fij is the total force acting as part of the MD simulation, and the virial (the pair

wise potential ) can be calculated. The virial theorem states the expectation value of the

sum of the products of the particles and the forces due to interactions between them. In

other words, the force moment tensor is characterized by mechanical equilibrium (Ball,

Blumenfeld 2002).

Here, the granular stress energy tensor Ξ is defined by

Ξ =
∑

i

1

2
miv

2
i +

∑
i

1

2
Iiω

2
i +

1

2

∑
i

∑
j 6=i

rij · Fij (4.8)

=
∑

i

(
1

2
miv

2
i +

1

2
Iiω

2
i +

∑
j 6=i

rij · Fij

)

where
∑
j 6=i

rij · Fij = σ̃i is the contact stress energy term of each particle and 1
2
miv

2
i = Kt

is the kinetic energy of each particle. The granular energy stress tensor is expressed as

the internal energy of the system. The mean gradualar energy stress is 〈Ξ〉.
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Figure 4.5: Plot of the sum of kinetic energy (translational and rotational) and the
pairwise potential (virial) and the gravitational potential as a function of time
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Figure 4.6: Plot of the mean kinetic energy (translational and rotational) and the pair-
wise potential (virial) and the mean gravitational potential comparing with all energy:
mean; sum
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Pebbles falling into the vessel are initially at a height of 45d with a velocity of 1m/sec

(z direction) above the bottom of the vessel, as shown in the Figure 4.3. At t=0 sec, the

pebble is released by regulating the constant mass flow rate of the particles produced. The

discharge orifice is blocked until 20,000 particles are deposited in the reactor. The kinetic

energy is composed of two parts as the sum of its translational and rotational kinetic

energies. Its kinetic energy is supplied entirely by the gravitational potential energy which

changes as the vessel is filled. The ratio of the translational to the rotational kinetic

energy has a difference of about 1%. The effective granular temperature is correlated

with the kinetic energy. For the energy of a macroscopic system, when the number

of particles, denoted by N, is increased on time dependence, the kinetic energy in the

system of the container is found to be inversely proportional to time through the energy

that is dissipated by the coefficient of friction and restitution between the pebbles in

the presence of particle-wall interactions. In contrast, the gravitational potential and

the force moment tensor are proportional to time. During this piling, as the stack of

particles is gradually filled with other particles, the movable distance between the initial

birth of the particle and its interaction with the filed pile becomes smaller. The different

geometry of the reactor affects this change as the energy behavior dissipated in time.

There is a slight change of the translational kinetic energy as a function of the hopper

angle. However, the variable of the hopper angle and the orifice size shows no appreciable

difference in the rotational kinetic energy. The gravitational potential is dependent on

a function of the orifice diameter and hopper angles. The pairwise (virial) potential has

different patterns depending on the hopper angle. This angle leads to a difference in

the height of particles in the hopper. The result of granular stress energy tensor shows

reasonable agreement with a variable of the height z above the bottom, similar to the

gravitational potential as shown in the Figures 4.5 and 4.6.

57



www.manaraa.com

4.1.2 Mass flow in piling

Figure 4.7: The trajectories of particles for tracking in piling case from MD simulation
with the hopper angle 45◦ and the orifice 6.5d under the influence of gravity

The trajectories of selected particles have been explored by MD simulations. The

proper time that elapsed between the space-time points depends on the trajectory of each

particle. This trajectory of the particles obtained by MD simulations can successfully

validate the experiments of the radioisotope tracer. For insight into the dispersed particle

behavior to reduce ambiguities, there are spreads in the particle distributions due to

collisions after the deposited straight lines as shown in Figure 4.7. The particle tracking

appears to be a biased random walk. The parameter of Mean Squared Displacement

(MSD) can make the comparison between the MD simulations and the random walks.

Trajectories of the particles result in two distinct regions, namely static and dynamic,

with a dependence on the external pouring conditions and the wall boundary. The

particle tracking method is an easy way to understand the interpretation of the statistical
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mechanics.

To evaluate the bulk system, the motion of all particles is calculated using the distance

and velocity of center of mass. Macroscopic motion predicts the mean location and

momentum of all the mass at time t in the reactor presented as in Figure 4.8. The

radius of gyration is used to describe the distribution of the particles or cluster to be

concentrated far from the distance from the center of mass. The radius of gyration can

be used to infer the phase transitions. The distance of the center of mass shows the

correspondence with the gravitational potential until it is sufficient to maintain a stable

position at 20 sec. The velocity of center of mass has no effect on the geometry of the

hopper angle and the orifice size.

From the transport phenomena, the mass transport can be examined. Figure 4.9

shows the vertical local interval of PBRs piling along with every 3d from the bottom.

The core diameter at intervals of 6d expands to the full reactor diameter, 30d in Figure

4.9. Mass flow rates in reactor systems are commonly determined by measuring the flow

regime. Specific region flow patterns can be used to analyze the complexity of granular

flows in order to find the significant analogies that are valid over the whole system. To

identify these flow rate is typified the domain of the residence time monitored a function

of the local region and the local core. From the calculations of the mass flow rate in

figure 4.9, it is clear that the local mass with comparing with geometry conditions shows

the response of a time delay of the capacity. The local mass amounts are proportional to

increases due to the local volume. As the characterization of a bulk flow given the local

mass flow rate, the first interval region of hopper is occupied by pouring the particles,

and then continuously, the second interval region is filled by the particle according to

the total mass flow of the system subjected to steady-state. The total mass flow is equal

to the sum of local mass fragments of the cumulative probability distribution of local
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Figure 4.8: Plot of center of mass (distance and velocity), the radius of gyration, tra-
jectory of the center of mass, and the center of velocity presented at each space-time
point
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Figure 4.9: Schematic of final particle configurations at 20 seconds and plots of mass
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local region
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mass flow. The correlation to the change in the number (or mass) density and volume

(or void) fraction, these changes show that the particle motion fluctuation is indicated

by collision effects previously shown in energy calculation results as a function of the

dissipation in the pile. However, this is difficult to clarify that the compacting pebble’s

state is affected by the gravitational stress along the height of the reactor. According to

the hopper design, the piling has a difference of the static angle of response and the top

of the pile. The mass of the top region is directly indicated by the plot of mass flow rate

(the region #11, #12) by fixing the total number of particles, 20,000.

4.1.3 The volume fraction and the coordinate number

The configuration of the volume fraction and the coordination number divides the whole

system into local regions which are described by the state quantities. In term of parame-

ters using HertzMindlin theory, the volume fraction changes result from the friction, and

the coordination number is associated with the stress within the confines of the regions

on mechanical equilibrium. As the pouring particles are filled with the blocked bottom,

the coordination number expects an increase in the regime. Although each local volume

is held constant, the number of pebbles would remain almost unchanged in the limited

volume fraction which is incoming particle takes place. The local volume fraction has the

range of RLP (Random Loose Packing) in term of the compactivity of the piling. The

static condition at 20 sec is approached at the critical volume fraction (max RLP) with

the coordination number, which is calculated by the dependence of the local regime as

described in Figure 4.9 (left side). The RLP range on time evolution is identified by our

results between 0.54 and 0.60 (Scott ,1960; Onoda and Liniger, 1990). Due to an increase

of the stress, the vertical local region is reached to the critical coordination number while

the volume fraction of it remains at max RLP. Here, we predict the phase transition
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of local regions. For frictional spheres, the saturation line corresponds to the critical

coordination number, z= 4 in the piling (Silbert, Ertas, et al. 2002). Figure 4.9 (right

side) shows that the differences in the local regions (#1, #2, and #3) are affected by the

conical volume shape, not the cylindrical shape. The growth rate of the phase diagram

has two types of shape functions which are associated with the data points between the

linear constant (cylinder) and the curve (#1, #2, and #3). However, the curve shape is

driven by the corresponding volume differences from the bottom to the upper region.

It is of crucial importance that the first local region (#1) should be chosen effectively

to exhibit the phase transition of primary interest such like an arching or flowing forma-

tion. For a statistical description to be reasonable, the qualitative plot of the transition

region is shown in Figure 4.11. The infinitely sharp line from z = 2 is dominated on left

side of the plot, which should be treated as the phase transition. The reason is that the

volume fraction on time has peaks. But as shown by on right side in figure, the slanted

lines indicate the regime as shown by the curves in figure 4.11. The difference might be

attributed to the arrangement which is determined to a flowing or a jamming before the

discharge. This result agrees with the jamming on the left of the plot and the unjamming

on the right of the plot since the discharge is clearly observed.
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Figure 4.10: Final reached the volume fraction, φ and the coordinate number, z at 20
sec (left side) and the domain in relation to φ -z (right side) in each region by volume
size effect
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Figure 4.11: Schematic of the volume fraction and the coordinate number on right side
in first region between 0 and 3 cm compared with the geometry
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4.2 The discharge in PBRs

The discharges have been simulated for the orifice widths (3.5d, 5.0d and 6.5d, where d

is the diameter of particle) and the hopper angles (75◦, 60◦, and 45◦). After the reactors

were filled with 20,000 particles, the discharge due to gravity is simply operated by the

opening of the orifice at 20 sec. This scenario is substantiated by the observed jamming

or flowing. The entire orifice of 3.5d exhibited the jamming phenomenon, while others

exhibited the flowing with the different value of mass flow rate. The jamming transition

in PBRs was examined. A design requirement of PBRs is that no jamming or arching

occur (Appendix C).

4.2.1 Jamming

The energy is calculated by the sum of the kinetic energy and the pair potential (virial).

The mean energy is obtained from the sum of energy divided by the particles in the

reactor. The energy gain peaks have originated from the inner particle motions which

are dropped in the reactor as shown in Figure 4.12. The jamming is presented by the

volume fraction and the mass flow rate in Figure 4.14. The key point is that the phase

diagram of the jamming is presented . The phase line of the volume fraction and the

coordination number go down and then the diagonal line is increased. The first local

region depicts the previous results in the piling that evaluates this prediction of the

jamming transition. The jamming observed in Figure 4.13, the jamming condition by

the hopper angle at 75◦ and the orifice size of 3.5d, is in excellent agreement with the

experiment setup. These results demonstrate the remarkable phenomenon related to the

rising direction of the jamming transition.
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Figure 4.12: Jamming conditions compared with the average and the sum of the kinetic
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in first region between 0 and 3 cm

Figure 4.13: Configurations of the experimental geometry (the orifice 3.5 and the hopper
angle 75◦) with the simulation and the jamming particles in region between 0 and 3 cm
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4.2.2 Unjamming (flowing)

The flow pattern of PBRs is shown in Figure 4.15. Figure 4.16 illustrates the cross section

of the force, the translational velocity, and the angular velocity. The total energy is calcu-

lated in Figures 4.17 and 4.18. The computational simulations were performed between

20 sec and 40 sec. However, the 5.0d orifice geometry has not completed the discharge.

This gravitational potential is either dissipated with the interactions or converted into

the kinetic energy of the flow. The energy in the system is based on the correlation of

the mass flow rates. The sum of rotational kinetic energy is about 20% of the sum of

translation kinetic energy. These kinetic energy fluctuations could be regarded as the

granular temperature effect of the interaction. The mean energy of the system is shown

in Figure 4.18. In particular, the mean kinetic energy had a sharp rise and fall by the tail

when the particles are almost discharged into the orifice in accordance with the difference

in the number of particles.
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Figure 4.15: Snapshot of flowing and stress mesh with linear velocity given the angle
45◦ and the orifice size 6.5d

70



www.manaraa.com

Figure 4.16: Snapshot of force, translational velocity and angular velocity calculation
showing vertical cross sections split in half and top view given the angle 45◦ and the
orifice size 6.5d in SI units
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Figure 4.19: The trajectories of particles for tracking in the discharge case from MD
simulation with the hopper angle 45◦ and the orifice 6.5d under the influence of gravity

The trajectories of the flowing particles are presented in Figure 4.19. We can distin-

guish the flow type by visual observation. The mass flow type has not only steady state

flow but also whole particles moving, which is not the stagnation zone in the hopper. The

particle position distribution is presented in Figure 4.20. The color scale indicates the

order of the particles from 1 to 20,000 particles after the piling. The distribution recessed

in the core is affected by the deposited particles on the height 45d. The particle distri-

bution is characterized by the different hopper angles and the orifice widths compared

in Figure 4.20. From this viewpoint of the dynamic systems, the snapshot of the distri-

bution in position can be demonstrated for the velocity profile along the heights. The

residence time of particles is relevant to the axisymmetric flow. It is eventually shown

that the residence time of each particle in the inside corner of the hopper is relatively

slower than that in the core due to wall friction and the applied stress.
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Figure 4.20: Configurations of final particle position distribution at 20 sec and the
discharge of the different geometry conditions with the color scale indicating the particle
order number

75



www.manaraa.com

Figure 4.21 shows the distance of the center of mass, the velocity of the center of

mass, and the radius of gyration about the hopper angles and the orifice widths with

time. As the number of particles decreases with time, the distance of the center of mass

is related with the mass flow rate. The velocity of the center of mass represents the

average velocity similar to the mean kinetic energy. The radius of gyration describes

how far the particles are dispersed from the axis of the distance of the center of mass at

time t. The radius of gyration on the time has an unusually sharp convex drop although

concave shapes are observed for the gravitational potential, the pair potential (virial),

and the distance of the center of mass.
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The simulation was carried out with different values of the local volume fraction and

the local coordination number when the discharge is generated over the whole system

as shown in Figure 4.22 (top). The patterns of φ -z were related to the local mass flow

rate (bottom-right). The phase diagram of the local discharge demonstrates appreciable

hysteresis loops compared with that of the local piling in Figure 4.10 (right corner). In

the first local region (#1, from the bottom to 3d), the volume fraction is independent

of the hopper angle and the orifice size at steady state as shown in Figure 4.22 (top),

however the coordination number is dependent on the hopper angle, the orifice size, and

the wall geometry. Thus, the phase transition has steady state scatter in the cluster

of points as shown in Figure 4.22 (middle). The points have two distinct regimes: the

steady state, like-liquid regime and the rapid like-gas state. The different geometries are

correlated with the mass flow rate. The mass flow rate is shown in Figure 4.22 (bottom).

The inner and outer of the mass flow rate are equal to the absolute value.
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Chapter 5

Conclusions

5.1 Summary

The characteristics of the piling and the discharge in Pebble Bed Reactors (PBRs) were

investigated with different types of hopper angles and orifice widths. Molecular Dynamics

(MD) simulations were performed by regulating the orifice plate bottom to determine the

effect of piling and discharge in PBRs. The process for MD simulations is divided into

two types. One is piling and another is discharge. The discharge of the hopper can

exhibit jamming or flowing. The mass flow rate of the piling and the discharge has been

computed. The 3D imaging technique known as Paraview has been monitored to visualize

the force, the translational velocity, and the angular velocity. The particle motion was

also tracked throughout the simulations and lead to the analysis of the granular flow. The

fundamental concepts in statistics mechanics were investigated, and a local phase diagram

was developed and used to analyze the phase transition of the jamming and flowing

condition. The gravitational potential and the kinetic energy were calculated to evaluate

the granular temperature and compared with the results obtained from the force moment
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tensor. The simulation results show that for 20,000 particles, the mass flow rate can be

found to be correlated with the local phase transition of the discharge in the range of the

local coordination number with the local volume fraction. Indeed, the geometry of the

hopper is related to the orifice size and the hopper angle. The geometry conditions play a

crucial role in the jamming and flowing, which are determined to use the wall stress and

the phase diagram of the volume fraction and the coordination number on the real-time

evolution. Particularly, the critical condition of the jamming is observed. The jamming

geometry is in good agreement with the prototype Pebble Bed Reactor for radioisotope

particle tracking in CEAR, Nuclear Engineering at North Carolina State University. The

major advantages of the proposed system in MD simulations of LAMMPS/LIGGGHTS

demonstrates comprehensively that the analysis of particle tracking in PBRs suggests

further understanding of the experimental methods and designs.

5.2 Future Work

First of all, the velocity profile of the discharge will be compared with our New Kinematic

Model. The model is associated with the volume fraction along the vertical and horizontal

direction. For a continuum mechanics approach, the average wall stress obtained from the

simulation results will be comparable to an analytical solution of the stress. For the scale

up application, the mass flow rate is used to predict the optimal geometric condition to

obtain an estimate of granular flows as follows the Beverloo equation. Finally, the energy

functions of the piling and the discharge will be developed with the analytical solution,

likely to be observed as a power law behavior.
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Appendix A

The phase diagram
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0.740.720.700.680.660.640.620.600.58

Gamma increased
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12

1010

8

12

10

6

10

8

6

4

0.750.700.650.600.55

6

4

0.750.700.650.600.55

7.0

6.5

6.0

5.5

5.0

4.5

4.0

0.640.620.600.580.560.54

zc=8.3
zc=7.7
zc=7

12

zc=7
zc=6.6
zc=6.2

10

8

k=0.47

6

4

0.700.650.600.55

Zc=5.5
12

Zc 5.5
K=0.47
Gamma=0

=-1
4

10

8
=-4

6

44

2

0.750.700.650.600.550.50
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Appendix B

Volume calculations

2.1

-3

1.81.51.20.90.60.30.0

Volume (m3 )

21

18

15

12

9

6

3

0

H
ei

gh
t (

cm
)

 D0 3.5cm α  75° 
 D0 3.5cm α  60° 
 D0 3.5cm α  45° 
 D0 5.0cm α  75°  
 D0 5.0cm α  60° 
 D0 5.0cm α  45° 
 D0 6.5cm α  75° 
 D0 6.5cm α  60° 
 D0 6.5cm α  45° 

  x10
-3

876543210

15

12

9

6

3

0

R
ad

iu
s 

(c
m

)

     x10

9
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Appendix C

The stress in jamming
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